UNCLASSIFIED

AD NUMBER

ADB206370

NEW LIMITATION CHANGE

TO

Approved for public release, distribution
unlimited

FROM

Distribution authorized to U.S. Gov’'t.
agencies and their contractors; Critical
Technology; Nov 95. Other requests shall
be referred to AFMC/STI, Phililips Lab.,
Kirtland AFB, NM 87117-5776.

AUTHORITY

Phillips Lab [AFMC], Kirtland AFB, NM ltr
dtd 28 Jul 97

THIS PAGE IS UNCLASSIFIED

PL-TR--95-1093 PL-TR--
95-1093
|

REUSABLE REAL-TIME OPERATING SYSTEM FOR
SPACECRAFT OPERATING SYSTEM SPECIFICATION

LORAL Federal Systems -- Manassas
9500 Godwin Drive
Manassas, VA 22110

s {03022 130

Final Report

PHILLIPS LABORATORY

Space and Missiles Technology Directorate

AIR FORCE MATERIEL COMMAND
KIRTLAND AIR FORCE BASE, NM 87117-5776

DTIC QUALITY TAaPROTED)

<

PL-TR--95-1093

This final report was prepared by Loral Federal Systems -- Manassa, VA under contract F29601-
93-C-0184, Job Order 3672TBAK. The Laboratory Project Officer-in-Charge was Capt Mary
Boom (VTQ).

When Government drawings, specifications, or other data are used for any purpose other than in
connection with a definitely Government-related procurement, the United States Government incurs
no responsibility or any obligation whatsoever. The fact that the Government may have formulated
or in any way supplied the said drawings, specifications, or other data, is not to be regarded by
implication, or otherwise in any manner construed, as licensing the holder, or any other person or
corporation; or as conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

This report has been authored by a contractor and an employee of the United States Government.
Accordingly, the United States Government retains a nonexclusive, royalty-free license to publish
or reproduce the material contained herein, or allow others to do so, for the United States
Government purposes.

If your address has changed, if you wish to be removed from the mailing list, or if your
organization no longer employs the addressee, please notify PL/VTQ, Kirtland AFB, NM 87117-
5776, to help maintain a current mailing list.

This technical report has been reviewed and is approved for publication.

"MARY M. BOOM, Capt, USAF
Project Officer
FOR THE COMMANDER
AN 2L/
CHRISTINE M. ANDERSON, GM-15 HENRY L. PUGH, JR./ Col, USAF
Chief, Satellite Control & Simulation Division Director of Space and Missiles Technology

DO NOT RETURN COPIES OF THIS REPORT UNLESS CONTRACTUAL OBLIGATIONS
OR NOTICE ON A SPECIFIC DOCUMENT REQUIRES THAT IT BE RETURNED.

A3

DRAFT SF 298

1. Report Date (dd-mm-yy) J2. Report Type 3. Dates covered (from... to)
November 1995 Final 04/94 to 7/95

4. Title & subtitle 5a. Contract or Grant #
Reusable Real-Time Operating System for Spacecraft F29601-93-C-0184

Operating System Specification

5b. Program Element # 63756D

6. Author(s) 5c. Project# 3672

5d. Task# TB

S5e. Work Unit# AK

7. Performing Organization Name & Address 8. Performing Organization Report #
Loral Federal Systems — Manassas
9500 Godwin Drive

Manassas, VA 22110

9. Sponsoring/Monitoring Agency Name & Address 10. Monitor Acronym
Phillips Laboratory.

3550 Aberdeen SE

Kirtland AFB, NM 87117-5776 11. Monitor Report #

PL-TR--95-1093

12. Distribution/Availability Statement Distribution limited to U.S. Government agencies and their
contractors only; Critical technology; November 1995. Other requests for this document shall be referred to
AFMC/STI.

13. Supplementary Notes

14. Abstract This document is the software requirements specification (SRS) for a Reusable Ada-based
Real-time Operating System (RROSS) sponsored by Phillips Laboratory at Kirtland Air Force Base and the Ada
Joint Program Office. This specification is part of a study by USAF Phillips Laboratory to create an open
standard for a spacecraft operating system and write standard interfaces to the Ada run-time system. The goal
of this study is to determine what OS features, capabilities and standard interfaces to payload and bus
software are required or desired by spacecraft software developers and to create a specification based on
these needs. This SRS specifies an operating system for a processor embedded within a spacecraft.
Computer or program failures can mean loss of mission goals for even overall mission failure.

15. Subject Terms Realtime, Operating system, Specification

19. 20. # of | 21. Responsible Person
Limitation of | Pages (Name and Telephone #)
16. Report 17. Abstract 18. This Page Abstract
Unclassified Unclassified Unclassified 44 |capt Mary M. Boom

Limited (505) 846-0461 Ext 317

Reusable Realtime Operating System Software Requirements Specification

CONTENTS

1.0) INTRODUCTION 1

LLI) PURPOSEooveuiemeecuisteestecsesesssaat s st sasaasesseseeneseessstenessonsssssentsasersasersssarssestesenesne sonatsasonssessssesasstsnessesssnesesasssasessenes 1
1.2) SCOPEveteervreereierersnearssrasssssssesssesssassssossacaconsesassesssessssessssntststossstsesessesssssaasssssessarssestsassinsatssestotssesensenesssessssssenens 1
1.3) DEFINITIONS, ACRONYMS, AND ABBREVIATIONSccceuimrreriermrenrerrerereeresesirinssosssteseseasasncssnsossserssssessssnsasasssessssons I
1.4) REFERENCEScveereerirereesersssssssesestetstsistcntntatseensasstsensasssseseasessesssessirssessstssssssssssstssssssosssnarnsarsesssssesesesencsensasssasns 3
1.5) OVERVIEWoovereirereeseinsessesessrasesssssesssessesearassesessessssassesesseststststesessntssssssssmessiesssmnsstessamatssesessssasestssessaeresanonsssssseses 4

2.0) OVERALL DESCRIPTION 5

2.1) PRODUCT PERSPECTIVE......ceesteteresesressessensssnssssessescsessesssnessasstssssesssantasonssissstsassenssasssssst sessssnsssssessesessssssssssessesresesent
2.1.1) SYSEEIM INLEETACES ... oeoeerieereeee ettt e bbb et ene
2.1.1.1) Development Environment
2.1.1.2) DEDUE ENVIFOMIMENL.o.ereereiniieiitiisisieteissssasssssssese st s e s ssssssessssesess s nsssbasssssassassnsnssssssasassebasesesasnsnnnassenssasases
2.1.2) USEF IREEFFACES «..oovevveeveeeieeeeeeteesee ettt et ettt bbb bbb a st
2 2.1.3) HAVAWAPE INLEFFACES........coeeeeeeeneseceeeeeecere ettt et ettt et bbb e bt bbb ss bbb as b b
2.1.4) SOfIWATE INLETTACES ..o ceeeeeeeeereee ettt st bbb bbb e e s e e e
2.1.4.1) SORWATE REUSADIHLY......vvrceeririieitrciririttst sttt vt er e s s rs e bbb bbbttt e e s b s ananins
2.1.4.2) Software Standards..........
2.1.4.3) Software Capabilities.......
2.1.4.4) Software Customization
2.1.5) COMMURNICALIONS TNLEITUCESoooeeeeieieieeriser sttt ettt s st st s st a e s s et e e an b e e senanans
2.1.6) MeEIOry CONSIIQINLSo..cooerereieereeeseeineree e ease s e s e s s e e b e e s b e e e
2.1.7) OPEFALIONSveeeeverieeeeeeeeerieiet st arie et ss e et se b e e en e e b s bbb bbb sttt e et e Rt eereneneseessaeenen
2,17 1) INTHAHZALION «..eeeeeeeeteeeer ettt s b e e e s b e e s R e n e s R R bbbt SR n e e s b e R R et s ab e s an b eas
2.1.7.2) Program Execution
2.1.7.3) Code UPAALESccourrerercrerrrcirmesetcnnerarseressesanterenmesssessessesssaeseas et s et be s e b s bates
2.1.8) Site Adaptation REQUIFEIMENLScoveiuirrenererinentsieseeseaee et se st ses e e eesesesseseeseasesessententesesesssenessesessnns 10
2.2) PRODUCT FUNCTIONS......vucvverteiertesersesessssesessesessesassessssesssssssssssssssassessssessssasessasssssssssessssesessssesassssesnssesesassesnsassses 10
2.2.1) ReQI-TiMe KEFREL..........ccooiieiiiiiit ettt ettt ettt st sttt st st et e b e st e e senebanaa s 10
2.2.1.1) Multitasking Process Management..........cc.cooiiiniiriiiiiiiiniiiiine st sssssmssssss s s e et sssassssssanesssmeessniess 11
2.2.1.2) Interprocess Communication and Synchronization 11
2.2.1.3) Interrupt Handlingcocvenerncecninninncnincsinccnecnens 11
2.2.1.4) System Clock and Timer Support e 12
2.2.1.5) MemOry MAan@BemENL.ccovceeerrererrerctesereenesnrereneseseeescsessestesraneseesesmesesnenesneseenesersssorencasemsotsseenesoresesasesesseessssncn 12
2.2.2) Virtual Memory Management
2.2.2.1) Data REAUNAANCY.......c.verereierneniernrenremeretcriesereeereserersasaesesae e tenssessassesarassesasassesanesesesssaesenesananessnesessensesessasassssasnsen 13
2.2.3) FHl@ SYSIENN ...ttt e et r et et s e s s et ere e e e 13
2.2.4) J/O SYSEEM.....ooooeeereeceeeitecereecerra sttt et et e se e e e ket et e et e b et st e g be st et e e s ant et abens 13
2.2.5) NEIWOIE SYSIEM ...ttt sttt sttt ettt sttt e s st s e e et e st seen e e e e st se st ere st e n e e st eatenesrens 15
2.2.6) Operating System LOGAccocccooiiiucmiiiiiieeececr e esctere ettt sttt et sa s essare s erone 16
2.2.7) Application Load, StArt, @NA STOPo..oocvvcevveeeriesiiectnrectrestsess et et et see st seess e sessesessaeeseessessssassanssssens 17
2.2.8) Error MANGEEMENLc.ccooueeeeersiiiintieteete ettt et eae ettt se et et s st e te e st sste st se s e e st et et et e b esbanbe st entanane
2.2.9) Monitoring Qnd LOGGINGccoocoviiirieuiceninteest sttt et et aes st st st st sttt st e se et s see st enenanesenns
2.2.10) EXPOr RECOVETY ..ottt sttt ettt ettt sttt st b e s e sn e -
2.2.10.1) E1Or DELECHOM ...ttt e et st st s e b bbbt b s e ne TN '
2.2.10.2) Restart.......ccccocoviinmnsennens
2.2.10.3) Checkpointc.coccovevenenee.
2.2.10.4) Data RECOVETYccccmviiminrinniiicienines
2.2.10.5) Program Recoverycccocvuvncniienniannen
2.2.10.6) Communication Recovery
2.2.10.7) Hardware RECOVETYccvcuruiiiiiiriiinisctiiinnsresisnssssensssasasnss st sasn st s s asans e s sasatsssaesnenssessesestasesenesanencacssensane
2.3) USER CHARACTERISTICS ..evvcveverereresnesessesstosessnssosesssssssssmsrsssesessesssosesssnssssesssssassososssssnssssesesssssassenssesosasesssessessnsneses
2.4) CONSTRAINTS.....cvuvuererererssiaesessesssesessesessessssessssessssesessessssessssesassassesessssssssassssesessesessssessssosessosessstossssssosnssssssesssses
2.5) ASSUMPTIONS AND DEPENDENCIES........vtvuetsrtsssssssessssessssssssssssssssssssossssssssssssssssasassestossassssesssssesnssesnssessonsasessssnes 20

- dii -

Reusable Reaitime Operating System Software Requirements Specification

2.5.1) ArchiteCtural GUIARIINES..........c.ccocveeeeeiriiireeietesreict sttt et sese bt e a et s e bt e s et ssanenasen 20
2.5.1.1) Performance.... .
2.5.1.2) SLOTAZE. ..cuvveecereneremeteroaseesersereresess e sersiiaeseseaseseatsasseseserstseseressasbs aaenacatas et ererebbentaebese et e s ererenasas s st sesssasatasaseserssasasass
2.6) SOFTWARE STRUCTURE AND PERFORMANCEcevotitiermscerenierasinsestssesiriessanisesresestssesesssssensessasesssssosensansessaseasasanes 22
3.0) SPECIFIC REQUIREMENTS 24
3.1.1) DevelOpment IRLEFTUCE.ocueveeeeeeciiirre sttt ettt ettt ee e ae s s 24
3.1.2) DEBUG INLEHACE. ...t et b s b e n bbbt et e 25
3.2) FUNCTIONS . cccuviuvereereesressstetecesaensstessstesssssantsssasassotsnsassssssasestssnntsssesssestose ssenessnassssstentsnssanessssasestensesnssessassssssasssoss 25
3.2.1) StANAAFA OS FEALUFES ...ttt ettt ettt stete et ase e ses e st e snesesbassesestentatassessessasserens 25
3.2.1.1) SCREAUNIEZ e cevvceceire ettt ettt s st bR s Rt s S et s bbbttt sebe 25
3.2.1.2) Data MANAZEINENL......ccevevereeecerereesersereaeesasemsesessesesesessaeisessacsetssstsessassststssatassssssabesssasacasessssssneresesessssssansnsssesasssnsannes 26
3.2.1.3) INterprocess COMMUNICATION ..cuv-rvvurrecururecerecretnesesereeesabseasseresst s esets bt s bbb e e s s b ot s nms st b et ersesnnranase 26
3.2.1.4) /O Facilitiesc.cccvevimereriererenrenierercenesreenns
3.2.1.5) Device Drivers......cccocenerniinncnneineninnninnnns
3.2.1.6) Network Connectivity............
3.2.1.7) File System.........cccoeeeurvccncnnne
3.2.1.8) Clocks and Timers.......c.........
3.2.1.9) INLEITUPLS ..eevveveeceerenet et sese b s ssaessess s b s s eas b s bbb e R bR e R e bbb s a bR bRt b bRt s st st
3.2.1.10) Loading and Unloading SOfIWATE.........cccervermiiiriiriiiircciiir ettt be b sese st asasaenens 29

3.4) DESIGN CONSTRAINTS.......covrruiuisreeisetisssensiesesseessstsssssssssssssasesssssssesasssssssasassesssesssssesnssssssassesassesnsnssetessesessssssssasses 31
3.4.1) Standards COMPIIANCE..................oceciiceiiiiieiiesieciete sttt es e be s sa st st e e be e et nenens 31
3.4.1.1) Programming STANAANAScccouvecierririrnerer et s esser et se e bttt b e e e s s et t st e e e s e e saeseauesesnesennas 31
3.4.1.2) LANZUAZE SUPPOTL.......eiueeieeecrtineenerietriieteseeneeseasauesseseesesoseesesesesssteseneeserststsaesaesentsstsseenemerarsseastasensessentantenteneeneesaeses 32
3.4.2) CONSIFAINLS fFrOM SYSEENN.....c..coueeveieeetenieeeeet ettt ettt ettt be et et e e e et ra et s s setbaebeset st e snneeaeaebeassensn 32
3.5) SOFTWARE SYSTEM ATTRIBUTEScccveeterreeteseessrssersasssessesstessasassssessasesssssssstossessesssssnsonsssssessssessesssasssessssssssssassenas 33
3.5.01) REIIABITIY ...ttt et sttt et ettt e e et bt e nrvent et b ranneas
3.5.2) AVAIIADILILY ..ottt ettt ettt e a et et et b et et ke sa e s b et et aabees
3.5.2.1) Data PrOtECHION ..c..ectirireeriiniitcecrerie st ree et ses et s hs e s s e bbb e s e R bt e s r st ea bt st e s e nEeasabb et sesanrsanss
3.5.2.2) RESLAMTINE SYSEIM ...ouuiireiririnreteiriererer et ees et casetsa st st s e e st sse e e essasa sttt st sesaese b seb e e s se s e s s sasatenens st s anatese
3.5.2.3) System ReCONTIGUIALION.cociiemrerircrtiieerieectsieiente et esses rete st seseshtra st sae et satassbeneseenestssasessn st asnsnensrsessasnseaen
3.5.3) SOCUFTLY ...ttt st e etk et et e e seen et ese e n ettt a e ane s
3.5.3.1) REPOTTNE EITOTSecveieiirircieiiceree ettt et sa e s ete s s stk sa e e e st s s b b e sttt a ek et ebesasassranannnatasseraes
3.5.3.2) Detecting System Failures
3.5.4) MAIBEQINADIIILY ...ttt et st s ta st s e et et s et st e e sa et st asbantabe s eaenans
3.5.5) POFEGDILILY......oeeoveeieeeieeteree ettt sttt sttt sttt a b sttt ne et st ettt s s ensstaatentete e eeeana
3.5.6) Configurability Guidelines
3.5.6.1) USIing Optional FEALUIEScvuevreriririiereneriesetitrieesneirasstsiessar e ssesssasaresesssesessnesesesessssesessesesersesanessensasassesensasases
3.5.6.2) Creating Customized Features...............
3.5.6.3) Specifying COnfIUIALION.cciierierereieriririereeresneeeet s et ses e rier et see et ses bt e se e e ser s seresesnesesssanessesentnnssnnessssssnsnnns

- iv -

Reusable Realtime Operating System Software Requirements Specification

1.0) INTRODUCTION
1.1) Purpose

This document is the software requirements specification (SRS) for a Reusable Real-time
Operating System (RROSS) sponsored by Phillips Laboratory at Kirtland Air Force Base and the
Ada Joint Program Office. This specification is part of a study funded by Phillips Laboratory to
create an open standard for a spacecraft operating system. The goal of this study is to determine
what OS features and capabilities are required or desired by spacecraft software developers and
to create a specification based on these needs.

Requirements are taken directly or derived from the Statement Of Work (SOW), technical
interchanges with spacecraft developers and operating system vendors, and from experience with
the Advanced Spaceborne Computer Module (ASCM) program. The objective of the ASCM
program, sponsored by Phillips Laboratory, is to develop and space qualify two 32-bit processor
modules for data and signal processing applications in future space systems to dramatically
increase the satellite onboard processing capability. Included in the development are space
qualified higher throughput 32-bit processors, higher density memories, advanced packaging to
decrease the overall size of the electronics packages, and supporting software. ASCM provided
operating system development experience for the Control Processor Module (CPM) phase and
the Advanced Technology Insertion Module (ATIM) phase has already generated a user's
requirements data base compiled and maintained at LORAL Federal Systems - Manassas.. This
SRS is designed to be an aid to the user in choosing an operating system as well as a constraint
on the operating system developer.

1.2) Scope

An operating system for processors embedded within spacecraft will be specified. The operating
system is to be portable in two ways: users must be able to reuse programs on multiple platforms
without changing the calls to system routines, and the operating system itself must be easily
reused across multiple architectures. Features will be identified as essential, required to meet
specification; or optional, desired but exceeds the specification. The origin of requirements will
also be identified in order to provide context.

1.3) Definitions, Acronyms, and Abbreviations

ANSI American National Standards Institute

AP Application Program

API Application Program Interface

ASCM Advanced Spaceborne Computer Module

ATIM Advanced Technology Insertion Module

CDRL Contract Data Requirements List; refers to documents required by a DOD
contract to be delivered to the government.

-1 -

" Reusable Realtime Operating System Software Requirements Specification

consistent In the context of data, consistent refers to the trait of being valid and up
to date. If one part of a structure has been updated and another part is
affected, but not yet updated, the structure is said to be inconsistent.

CPM Control Processor Module

CPU Central Processing Unit

DMA Direct Memory Access; refers to a device other than the CPU accessing
memory without CPU intervention.

DOD United States Department of Defense

FTP File Transfer Protocol; standard TCP/IP protocol

host The workstation or computer which acts as a software development
station, i.e. runs compilers and linkers and provides a debug interface to
the target processor.

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol; refers to the Internet addressing and packet definitions
which are built upon hardware protocols and then form the basis for all
Internet communications programs. This is the interface between the
transport layer and physical layer.

KB Kilobytes

MB Megabytes

MIPS Million Instructions Per Second

ms millisecond, 1/1000 second

NFS Network File System; refers to programs which allow named storage
groups (files) to be accessed from network connected devices.

NVRAM Non-Volatile Random Access Memory; refers to RAM which holds a
value without being powered.

OS Operating System

POSIX Portable Operating System Interface (IEEE-Std-1003)

RAM Random Access Memory

Real-time When a system's response to a stimulus is valid for only a short time
(typically seconds or less) due to further changes in environment and
stimuli it is said to be a real-time system.

reliable In the context of network communications protocols, reliable refers to
transfers for which the sender gets acknowledgment and the receiver
checks the order and number of the transmitted packets.

ROM Read Only Memory

RPC Remote Procedure Calls; refers to TCP/IP programming interface to

execute subprograms on a remote host.

-2 -

Reusable Realtime Operating System Software Requirements Specification

RROSS Reusable Real-time Operating System for Spacecraft

shall Refers to a feature which is required in order to meet the minimum
criteria of this specification; legally binding.

should Refers to a feature which is desired but not required to meet the criteria
of this specification.

SLIP Serial Line Internet Protocol; allows two TCP/IP hosts to connect
between serial ports.

SOwW Statement Of Work; refers to the portion of a contract which clearly
states the expected results to be provided by the vendor to the buyer.

SRS Software Requirements Specification

target Embedded computer which will execute RROSS and user programs
developed for RROSS.

TCP Transmission Control Protocol; refers to a reliable network transfer
protocol in which user programs may assume the consistency of the data.

TCP/TP Transmission Control Protocol/Internet Protocol; refers specifically to
TCP layered onto IP [See TCP], and generally to standard Internet
communications.

Timely Refers to a response which occurs soon enough after a stimulus such that
the response is still valid for the current environment; refer to Real-time.

TOD Time Of Day; refers to free running processor clock which is used to
track the actual time elapsed since it was set.

UDP User Datagram Protocol; refers to an unreliable network transfer protocol

‘ in which user programs are responsible for the consistency of the data.

UNIX Multitasking operating system supporting multiple users originally
developed at AT&T Bell Laboratory.

unreliable In the context of network communications protocols, unreliable refers to
transfers for which the sender gets no acknowledgment so that it is
unknown whether all or any of the transmitted packets arrived safely.

1.4) References

IEEE-Std-830-1993: IEEE Recommended Practice for Software Requirements Specification
IEEE-Std-1003.1-1990: POSIX Part 1: System Application Program Interface (API) -C

Language

IEEE-Std-1003.4-1993: POSIX Part 1: API - C Language - Amendment: Real-time Extensions

IEEE-Std-1003.5-1992: POSIX Ada Language Interfaces - Part 1: Binding for System
Application Program Interface

Reusable Realtime Operating System Software Requirements Specification

ANSI/ISO/IEC-8652:95: Information Technology - Programming Languages--Ada: Ada
Reference Manual

MIL-Std-1815A-1983: Ada Programming Language

Statement Of Work - Contract Number F29601-93-C-0184: Statement of Work for
Development of this specification for United States Air Force, Phillips Laboratory, Kirtland Air
Force Base, New Mexico.

1.5) Overview

The requirements in this document are based upon the contract's Statement Of Work, technical
interchanges with spacecraft developers and operating system vendors, and the work done for the
ASCM project. The format of this specification follows ANSI and IEEE Std 830-1993 starting
with an introduction, then a high level description of the specified product, followed by actual
requirements organized by function. The introduction provides the reader with a brief
description of the product, the part it plays in the system, and references used. The high level
description provides the reader with a more detailed description of the product without
presenting any actual requirements. The purpose of the high level description is to provide
background information and a context in which to apply the binding requirements specified in
the third section. Specific requirements in section three may be essential or secondary. Essential
requirements are specified with shall; secondary requirements are specified with should.
Secondary requirements are those which are desirable, but are not needed to fulfill spacecraft
requirements.

Reusable Realtime Operating System Software Requirements Specification

2.0) OVERALL DESCRIPTION
2.1) Product Perspective

This Software Requirements Specification (SRS) specifies an operating system for a processor
embedded within a spacecraft. Programs executing within a spacecraft control the thrusters,
gyroscopes, science instruments, directional sensors, and communication devices. Large
amounts of data are often stored, processed, and transmitted. Computer or program failures can
mean loss of mission goals or even overall mission failure. The specified operating system,
RROSS, must provide the portability, reusability, and open standards available to users of
commercial operating systems while providing, or at least allowing, the data protection, error
detection and recovery, and reliability of military and spaceborne software systems.

2.1.1) System Interfaces

An operating system is supported by development tools ranging from a compiler and linker to an
integrated suite including edit, compile, link, profile, simulate, and debug capabilities. The
operating system may come with a customized set of tools or rely on other commercially
available tools with the addition of customized libraries or link addresses. This specification will
specify the support which is necessary for developing user programs for an embedded target
processor.

2.1.1.1) Development Environment

A user must be able to create or update source files with any host system editor, even if one is
provided with the development system. The development system must support the compilation
of Ada, C, and assembler source code. Users must be able to link the object modules together
and create an executable made up of subprograms written in different languages. Error messages
and warnings must be provided, including warnings when the user has replaced a function
provided by the system or standard library with a user function. The linker must provide the
ability to specify the location of user programs when the operating system (or load support tool)
loads them into memory.

Configurability of system software should also allow users to specify which pieces of the
operating system will be loaded and used in the system. For example, one should be able to
choose network support for specific devices (e.g. RS232 interface) and not have to choose all
network support or none.

Optionally, the development tools may include a profiler to analyze execution, performance, and
data flow within a program, and a simulator to execute programs on the development system as if
it were on the target processor. The simulator should optionally support source level and
symbolic debugging as well as instruction level execution and visibility. (Reference 3.1.1)

2.1.1.2) Debug Environment

Users must have an interactive path from the development workstation to the operating system
running on the target processor. It must support loading, executing, inserting faults, and
monitoring the operating system and user programs.

-5 -

Reusable Realtime Operating System Software Requirements Specification

The debug tools must support loading the target processor with executable files produced by the
linker tools. The user should not have to manipulate the executable files to specify addresses,
sizes, or other parameters required to place the program.

Low level debug interfaces will not be specified since they are part of the hardware platform on
which the operating system executes. The operating system and the user programs are equally
dependent upon a good instruction level debug path in the processor. Not all processors support
a non-intrusive debug port, but it is recommended. Such a port should allow programs to be run,
stopped, and stepped by an instruction; memory and registers to be accessed, interrupts to be set,
and breakpoints to be used. Disassembly of instructions from memory should also be supported.

The operating system should support high level debug techniques. In particular, a user should be
allowed to run a program and retrieve the contents of variables and memory locations,
information on which routines have been called, and the contents of parameters given (in) and
returned (out). Interprocess communications and relationships should also be visible such as
contents of message queues, current status of all active tasks, why tasks are blocked, and status of
controlled resources. Multi-processor operating systems should allow the examination of
interprocessor communications structures and status of tasks running on other processors. It is
especially important to support strong debug tools when using a processor implementation which
does not support non-intrusive debug at the instruction level.

The development system should also support patching of programs (writing object code directly
into memory or binary images to be loaded). This practice is not uncommon (in the context of
fixing a program in a computer millions of miles from Earth using a relatively slow load path) to
minimize upload time and impact to the rest of the memory image. The user will need to see
object code produced from the compiles along with detailed maps of the placement of each
routine by the linker. Finally, the operating system must allow program images to be updated
while the system is running since (unless the hardware supports an independent memory access
path) a communications program will receive the command to update memory and then the data
and location to be changed. This is described in section 2.1.7.3 of Operations. The ability to
update data, programs, and system structures may also be used to insert errors into the software
in order to test the system's response and recovery. (Reference 3.1.2)

2.1.2) User Interfaces

Users interact with the operating system through the system interfaces such as the debug and
development environments. The system interfaces should provide user friendliness with mouse
directed point-and-click menus. All actions provided to the user should be available on a menu
along with on-line help information. When developing software, the developer should be able to
enter code with a favorite editor, build the code within the development environment, have
compile and link errors highlighted and available for update, rebuild until successful, simulate
the program, download the program to the operating system running on the target, and run the
program. Preferably, except for writing code, only the mouse is used to perform these actions.
The development environment is dependent more upon the compiler and tool suppliers than the
operating system suppliers. It is a major factor when considering productivity and quality of user
developed software. (Reference 3.1.1)

" Reusable Realtime Operating System Software Requirements Specification

2.1.3) Hardware Interfaces

Since no particular hardware architecture may be specified by this document, the requirements in
this section are valid only for architectures which support the hardware described.

The operating system must handle or allow the user to handle interrupts caused by parity, timing,
or other types of errors. The operating system must allow response to any and all error interrupts
provided by the hardware. (Reference 3.2.1.9)

The operating system must allow CPU reset, when presented as an interrupt, to be handled by the
system initialization program whether or not it is part of the operating system. (Reference
3.52.2)

The operating system must allow for the implementation of a deadman timer switch which will
behave as a CPU reset when it expires. Resetting of the timer must be supported and must be
customizable by the user to handle any hardware implementation.

Background health and status processing must be allowed. The operating system or user
programs must be allowed to scrub memory periodically where memory error correction is
supported. The operating system or user programs must be allowed to perform monitoring
functions to determine whether all tasks are running normally. (Reference 3.5.3.2)

Where hardware support exists for replacing failed memory devices with spare devices (such as
column sparing), the operating system should provide interfaces or services to detect failures and
replace the device. Where interfaces or services are not provided, the operating system must not
prohibit user programs from receiving memory error reports and performing the replacement.
(Reference 3.2.1.2)

2.1.4) Software Interfaces

The software interfaces are the Application Program Interfaces. They provide standard
procedure and function calls to user programs to request operating system services such as
message passing, device access, or timing. May include device driver interfaces and redundancy
for data protection.

The interface to the operating system from software will be by way of system library routines or
language interfaces to system procedures and functions. Inter-language interfaces desired include
Adato C, C to Ada, Ada to assembler, and C to assembler. Each interface provided must define
the register, stack, or memory preparation preceding the call to a function written in another
language. Rules for memory usage must also be provided so users can prevent memory
allocation problems between Ada Runtime Executives and C and assembler programs. Because
the tasking properties of Ada-95 are nondeterministic during rendezvous, Ada programs must be
allowed to run with a multitasking kernel or the implemented Ada Runtime Executive must be
deterministic. In either case, the rules governing rendezvous or dispatching must be documented
for users. (Reference 3.4.1.2)

2.1.4.1) Software Reusability
It is required that the operating system offer reusability on two levels:

e The operating system must be portable to many processors.

Reusable Realtime Operating System Software Requirements Specification

o The applications must be able to run with this operating system on any processor by merely
recompiling with the appropriate compiler linker tools. The software interfaces must be the
same no matter what processor is acting as host to the software.

(Reference 3.5.5)

2.1.4.2) Software Standards

The operating system is expected to conform as closely as possible to standard Ada (MIL-Std-
1815A-1983) or POSIX (IEEE-Std-1003.1) with a goal and documented migration path toward
the upcoming Ada-95 (ANSI/ISO/IEC-8652:95) and POSIX Ada Bindings (IEEE-Std-1003.5), or
POSIX Real-time Extensions (IEEE-Std-1003.4). (Reference 3.4.1.1)

2.1.4.3) Software Capabilities

Capabilities may be provided to the user in a variety of forms. Many math functions, string
functions, bit operators, and other low level data manipulations are typically provided as
subroutines in a library. Other capabilities, such as sending and receiving messages, device I/O,
or controlling dispatching, may be provided as interfaces to kernel routines. Recommendations
will be made in some cases with regard to partitioning of function between library subroutines
and system routines, but this specification will not attempt to design the product by making
requirements of this nature.

Math function libraries, string manipulation libraries, bitwise operations libraries, dynamic
memory allocation and deallocation functions, and interprocess communications functions are to
" be provided. (Reference 3.4.1.2)

Parameter checking on may be done by the function being called, but it is not required and may
be done by compiler generated code.

2.1.4.4) Software Customization

User programs must be allowed to change, replace, or create new and existing capabilities to
meet specific needs. Outside of the core kernel services, functions will be specified as
expandable, meaning that a user may replace functions or add new ones which can be used as
system calls or library routines by other user programs. (Reference 3.5.6)

2.1.5) Communications Interfaces

Communications interfaces will be specified at the device driver level. Since no range of system
architectures has been specified, the types of communications is not known. This specification
concentrates on the definition of user interfaces for communications protocols such as setup,
open, read, write, and close. (Reference 3.2.1.4)

Communication interfaces and device drivers must at least report detected errors. The errors may
be with protocol, timing, or parity. Opening a communications port should establish that an
error-free connection exists. Closing a port must clean up any data structures used by the port
even when following an error. (Reference 3.2.1.5)

Reusable Realtime Operating System Software Requirements Specification

Other support should include reporting to any additional processes which have registered for
errors on a specific device; logging errors for later retrieval; buffering data until it has been
assured of reaching its destination; or retransmitting unacknowledged data. Error recovery
support may include information queries such as reporting the current owner or user of a device
or all devices owned by a process.

To support processes when hardware devices fail, the device driver should be able to detach from
a failed device, attach to another device, and provide service under the same device name as
before.

To support redundant processes, a device should support sending received data to multiple
processes simultaneously. Each process may then interpret the data independently and check on
another's results. The reverse is also desired which is to allow multiple processes to send data
simultaneously with only matching data being sent out and mismatched data causing an error
status to be returned to the callers.

To support redundant data paths, a device driver should be allowed to send and receive data via
multiple hardware devices while providing the user program with a standard interface. When
writing or sending, the device driver would transmit the same information on all of the attached
hardware ports so that the receiver could be assured of receiving at least one good copy. When
reading or receiving, the device driver would receive data from all of the attached hardware
ports; compare the copies, and; if the data met the correct criteria, pass the data to the user. Data
which did not compare should be reported as an error condition. Such a driver would allow
compare or voting algorithms to be used on communications without each user program needmg
to implement them. (Reference 3.2.2.2)

2.1.6) Memory Constraints

Due to the expense of radiation hardened memory components, spacecraft have small RAM
spaces usually between 64KB and 64MB. ROM space is even more scarce, 64KB being the
usual maximum. Memory must be efficiently allocated and deallocated and the operating system
and user programs must be small enough to fit within the target system. (Reference 3.4.2)

2.1.7) Operations

A spacecraft will have several user programs operating simultaneously to control the spacecraft
and its instrumentation. Sensing, communication, power control, navigation, and pointing
programs will all need to run within strict time limits and have access to communication
connections to other spacecraft systems. User programs expect to operate in a way that allows
them to share data easily and quickly. They must be guaranteed timely access to critical
resources, device or data.

2.1.7.1) Initialization

The operating system should have as short an initialization time as possible. Any state data,
hardware or software, that is assumed to be initialized at operating system startup must be
reinitialized for restarting the system without reloading all of the software. Programs must not be
prohibited from saving state data to be retrieved later, even after a restart of the operating system,
in order to return to a predefined state. The operating system must allow forward checkpointing
under the direction of user programs. (Reference 3.5.2.2)

Reusable Realtime Operating System Software Requirements Specification

The operating system or user programs should be allowed execute from ROM or RAM.

2.1.7.2) Program Execution

Most spacecraft operate with strict timelines for events to occur. The operating system must be
able to guarantee completion of a cyclic task with periods as short as 8ms or as long as a day.
Aperiodic functions, such as interrupts, or communications processing must be started within
times as short as 1ms after receiving the stimulus. The actual time to complete the task will

depend on the user programs.

Interprocess communication must support both large and small data packets to allow information
sharing and coordination of tasks. Data sharing protected with atomic operations must also be

supported. (Reference 3.2.1.1)
2.1.7.3) Code Updates

Debugging problems after launch require visibility into the system by communications programs.
Just as usual debug on the ground requires visibility into memory, variables, program status,
resource availability, and message queues, so does debug of the deployed system. Since the only
available communication path for a deployed embedded processor is through communication
paths, programs monitoring those paths must be able to access the required debug information.
Access may be provided by system subroutines, shell tasks, or other query mechanism. The user
should be allowed to create a customized query routine built from system level subroutines or
functions.

A user program, receiving commands from the ground via a communications link, must be able
to update program images in RAM. Programs will either be updated after loading or updated and
reloaded. A user program controlled from the ground will also be able to read or write memory
in order to support remote debugging via a communication channel. Allowing visibility and
control from the ground is a major feature. (Reference 3.2.2.3)

To protect data during flight, RROSS should provide memory protection. When the code is
being updated, memory protection would have to be disabled for the blocks being changed.
Once the update is complete, memory protection should be enabled again on all code blocks.

(Reference 3.2.1.2)
2.1.8) Site Adaptation Requirements

The system must allow downloading to a processor embedded within a spacecraft subsystem.
The target processor will not have a display or keyboard. The user will use signal probes,
discrete input and output signals, and a CPU test interface such as IEEE-1149.1 or IEEE-488. It
is desirable that the development system and operating system support function traces, maps of
procedure and variable locations, and debugging through an I/O device. (Reference 3.4.2)

2.2) Product Functions
2.2.1) Real-Time Kernel
At the core of RROSS is the real-time Kernel which is made up of the following features:

e Multitasking process management

e Interprocess communication/synchronization

- 10 -

Reusable Realtime Operating System Software Requirements Specification

e Memory management
e Interrupt handling
o System Clock and Timer support

These features form the basis of the application execution environment (or runtime) and also
serve as operating system primitives which can be used to build up further features and
extensions.

2.2.1.1) Multitasking Process Management

The real-time application environment is made up of prioritized periodic processes (tasks) with
aperiodic (asynchronous) events and is best scheduled with a preemptive priority model. The
preemptive priority model will allow the user to support timelines using timer interrupts, single
loop programs with selected or no interrupts, and a variety of combinations of priorities,
interrupts, critical and non-critical tasks. Task context switch time will be constant and
deterministic. The Multitasking environment will allow for task creation, deletion, and
suspension. (Reference 3.2.1.1)

2.2.1.2) Interprocess Communication and Synchronization

The cooperating Multitasking processes require a set of mechanisms to share memory, transfer
data/messages, and synchronize actions.

Shared memory is the most simplistic method for tasks to share data. Tasks can communicate by
using pointers to the shared memory. This simplicity of task communication requires services to
handle concurrent access to the shared memory. Methods to deal with this Mutual Exclusion
include disabling interrupts, executing in a critical region (disabling preemption) and using
semaphore locking techniques. In this last case, a priority inheritance technique will be available
to handle the problem of priority inversion.

The basic form of data transfer between tasks or between an interrupt handler and a task will be
through a Message Queue facility. This facility will support the ability to transfer variable length
messages at the Kernel level. Additional support at a higher level (such as Pipes and Sockets)
can also be offered for those applications that can incur the overhead involved in their use.

Task synchronization will be provided using semaphores. A task or interrupt handler will signal
the occurrence of an event by giving the semaphore. The signaled or handling task will wait on
the semaphore and become ready to execute when the semaphore is given. Task synchronization
that requires an associated transfer of data is inherently provided by the Message Queue
facility.(Reference 3.2.1.3)

2.2.1.3) Interrupt Handling

As interrupts are the basis of asynchronous events and require timely action, efficient interrupt
handling is a critical Kernel function. Fast interrupt handling to reduce interrupt latency will be
provided.

A service will be provided to install and uninstall application interrupt handlers to system
interrupts not managed by the Operating System.

" Reusable Realtime Operating System Software Requirements Specification

The bulk of interrupt processing should be sent to a multiprocess level task to provide
prioritization, queuing and reduced interrupt latency. A set of interrupt to multiprocess
communication services will be provided for this purpose.

The operating system should not prohibit the development of interrupt handlers which can handle
nested interrupts on the same or different levels. Masking of interrupts on a level by level basis
must be supported when supported by the hardware architecture. (Reference 3.2.1.9)

2.2.1.4) System Clock and Timer Support

A real-time clock will be provided to keep track of system time. Services will be provided to set,
update and read the clock. The ability for a task to be signaled after a specified time delay will
be provided. The handling of this time-out will be done at task level. The ability to invoke an
application interrupt handler by the delay timer will be provided.

Due to power conservation measures in spacecraft, the processor clocks are often turned down to
lower frequencies. This is done while cruising to the destination or waiting for events of interest
to occur. The clock services must be tailorable for changing in the hardware clock rate. The
operating system must be able to dynamically control the interpretation of the clock increment
rate. If the hardware architecture has the time of day clock tied to the system clock, then
changing the processor changes the TOD clock. When using the time of day user programs and
system software must get the correct time based on the new clock rate. (Reference 3.2.1.8)

2.2.1.5) Memory Management

The basic Kernel requires a memory management function which allows dynamic memory
allocation and deallocation from a fixed block memory pool. This function will be used by any
program component to allocate and free memory, this includes the application as well as any
operating system component or extension including the Kernel.

" The size of the memory pool in both total size and block size will be configurable by the user.
(Reference 3.2.1.2)

2.2.2) Virtual Memory Management

Virtual memory management should be optionally available. Besides allowing memory to be
extended to other devices which is of limited use to a spacecraft system, virtual memory
management allows memory protection and remapping. Memory protection should include write
protection on a block by block basis where the size of the block is determined by the system
implementation. Protection may be offered on a memory block such that only certain users may
access it. Memory mapping should allow a block of memory to replace another. When failed
memory cells are detected in a block, it is desirable to disable that block and enable a new
memory block which will respond to the same virtual (user) address. The replacement memory
would be kept in reserve and the amount of reserve should be configurable when the user
programs are compiled and linked or when the system is initializing on the embedded processor.

(Reference 3.2.1.2)

- 12 -

Reusable Realtime Operating System Software Requirements Specification

2.2.2.1) Data Redundancy

Memory allocation and access procedures should be provided to allow user programs to allocate
memory which will be duplicated and updated in a controlled way such that one copy of the data
is always consistent even if the program stops while updating it. A function should also be
provided which would evaluate the consistency of the data and fix any inconsistent copies using
the other copy as a reference. The functions required would include versions of: allocate,
deallocate, read, write, and clean. This memory space must not be returned to the available
memory pool when the operating system restarts after an error. It must be kept reserved and
owned by the program which created it so that when the owner is restarted, the data is still
available. If program ID's may not be consistent between OS initializations, then a user name or
user defined identifier must be used to reserve the memory space.

An additional function may be provided to allocate memory space which will be saved for the
owning program after a system restart, but which is not duplicated. It would be up to the user
program to guarantee consistency of the data contained in the space.

A function should be provided which reports the ownership of a block of reserved memory.
Another function should report all blocks owned by a specified program. These functions will
help in cleaning up space if system restarts are not successful. Another function should be
provided which will clean all reserved memory spaces so that an operating system initialization
may reinitialize everything and start over from scratch. (Reference 3.5.2.1)

2.2.3) File System

RROSS will have the capability to interface to File Systems which support the storage of groups
of data in named files. The basic I/O primitives for these files will be routed by the I/O System
to the appropriate File System for processing. The File System will contain the function needed
to implement the particular file format supported and drivers for supported devices.

File Systems can be provided and added as necessary to handle any file format and device
needed. While it is doubtful a disk device File System would be used during a space mission, it
is possible one may be included during development for load capability or other use.

RROSS should provide a memory based File System which provides the capability to read and
write collections of data in named files. File support for a sequential recording device must not
be precluded. (Reference 3.2.1.7)

2.2.4) I/O System

The RROSS I/O System will present a standard, device independent view of any I/O device. A
device is an object which is used to send data to and receive data from. The type of device
determines the source and destination of this data. A device can be a physical device such as a:

e Communication port
e Bus or Backplane interface (e.g. 1553 or VME)
e Discrete line

e Interface to custom hardware
e Disk drive

- 13 -

Reusable Realtime Operating System Software Requirements Specification

or a logical device such as a:

e Pipe (an intertask message I/O device)

o Socket (an interface of the Network System)

e RAM Disk drive

To enhance portability and reusability the user interface will be compatible with the UNIX I/O
system. The interface implements a set of the seven basic I/O primitives:
create

remove

open

close

read

write

NS Y AW

ioctl

where the primitives used and their implementation specifics differ according to the target
device. The seven basic I/O primitives operate on named objects called files. A file can be an
actual file contained on a file system whether local or remote, or it can be a named object that
refers to an I/O device. I/O is accomplished by reading from and writing to the named file
regardless of the physical implementation of the I/O device. The one exception is for network
communications in the form of Sockets which are not described by named files. Creating a
socket does return a file descriptor which can be used with standard I/O system reads and writes.
The Network System is described in section 3.2.1.6. In the case of actual files on a file system,
the basic I/O primitives are passed to the File System component which manages the I/O
requests. The File System is described in section 3.2.1.7. The relationship between the I/O
System, Network System, and File System is depicted in Figure 1. (Reference 3.2.1.4)For I/O
requests of devices other than the File System or Network, the basic I/O primitives are
implemented in device drivers for the specific device. One function of the I/O System is to route
the I/O primitives to the File System, Network System, or specific device driver as appropriate.
The I/0 System will also provide the capability to dynamically install device drivers. This allows
the I/0 system to be extended to handle any device as needed. (Reference 3.2.1.5)

- 14 -

Reusable Realtime Operating System Software Requirements Specification

- /O System
Network File
System System
Network File Bus 110

Device Driver

Device Driver

Device Driver

Device Driver

Figure 1. /O System

Socket Support

TCP UDP

Network Device Drivers

Figure 2. Network System

2.2.5) Network System

Network support provides the connectivity needed for an Open Systems environment. By
utilizing the industry standard Internet Protocol (IP) for network communication, RROSS can
communicate with any connected system which supports the IP standard. '

RROSS will extend the Internet Protocol with the User Datagram Protocol (UDP) and
Transmission Control Protocol (TCP) for process to process communication. Both of these
protocols extend the IP address with a port address; TCP adds a layer of reliability and
guaranteed data transmission with a point to point connection between processes.

Reusable Realtime Operating System Software Requirements Specification

The application interface to Network communications and the standard protocols will be
provided by the Socket abstraction. A Socket is an endpoint for communication and can be
created for datagram use (UDP), or stream use (TCP). Using Sockets for communication
provides a level of open connectivity, processes in RROSS can communicate with any other
process which uses the Socket abstraction. The other process can be another RROSS process or
a process running under a different OS which supports the Socket interface. Additionally, the
communication is the same regardless of where the two processes exist, they can be running on
the same CPU, on different CPU's sharing a common backplane, or on different CPU's connected
by a network. This adds to the portability of an application as it can be distributed to run as
needed.

At the lowest level are the Network Device Drivers which handle the physical transmission
implementation for the target medium. Device drivers can be provided which handle standard
network devices such as Ethernet or SLIP. Device drivers can also be added to handle network
communications over the system backplane or other processor interconnection. This allows the
high level network facilities to be used no matter how the processors are connected.

The Socket interface to network communications can be used to build up other OS functions and
standard interfaces such as:

e File Transfer Protocol (FTP)

e Remote Procedure Calls (RPC)
e Telnet

e Network File System (NFS)

e OS Bootstrap Loader

o Application Loader

¢ Remote Debugger

RROSS will support multiprocessing with the Network System, processes will communicate
using the standard network functions. This allows physical networks to be changed and

- applications to be moved among processors without changing application code. The underlying
communication implementation (from TCP down to the basic driver level) can be chosen to
provide the level of openness and performance desired. (Reference 3.2.1.6)

2.2.6) Operating System Load

The operating system should be able to execute from ROM while using RAM only for writable
data. Since all processors have some RAM available, the operating system must support being
loaded into RAM. The OS may load itself from ROM, or it may rely on a boot program to load it
and start its execution. Users must be allowed to rewrite any boot programs since the operating
system may be loaded from ROM, a communication device, or placed into RAM by an
independent device using DMA access to local memory. DMA access requires hardware
support. (Reference 3.2.1.10)

- 16 -

Reusable Realtime Operating System Software Requirements Specification

2.2.7) Application Load, Start, and Stop

User programs must be allowed to load from many sources. They may be kept in ROM or
NVRAM (some type of memory) or they may be kept elsewhere in the spacecraft or on the
ground (requiring a communication channel for loading). Programs should be loadable from a
file (a named image) kept on any device.

Loading an application (user) program may be initiated by the operating system or by another
user program which will then become the parent of the new program, the child.

Application programs must be allowed to kill other programs or themselves. When an application
program is killed, the memory space and any other resources it used must be reclaimed by the
system.

To guard against programs being killed erroneously, programs that initiate kill commands should
use an independent means to check the need to kill a program. An example implementation
might be code which builds the command message, verifies from some separate data or message
the need to kill the program, and then sends the message. (Reference 3.2.1.10)

2.2.8) Error Management

Errors must be propagated upward through subroutine calls and child-parent relationships until
they can be handled by a user program. A user program may elect not to handle a reported error,
but at least one user program must be given the opportunity. Errors in subroutines must be
passed back to the caller; errors which cause programs to fail (crash) must be reported to the
parent of the failed program. Optionally, users may be allowed to monitor errors of programs,
communications, or system services. .

Ada exceptions behave as other errors. Exceptions must be propagated from subroutine to caller,
and from child task to parent. Exception handlers may use interprocess communications to
report errors to other programs or tasks. (Reference 3.5.3.1)

2.2.9) Monitoring and Logging

User programs and system services should be able to record the fact that they executed, in what
order they executed, parameters passed in or out, and whether or not they were successful. The
record is invaluable for debugging problems with the interaction of multiple programs.
Monitoring may be provided with procedures which control access to a shared memory space and
record the event in a consistent manner. The biggest disadvantage is that the shared log becomes
a critical resource required by all programs, but accessible by only one at a time. Monitoring
may be provided by a another task or program executing asynchronously to other user programs.
Messages are sent to the monitor task using standard interprocess message facilities. The
messages should optionally be logged asynchronously without impacting the performance of the
caller, or synchronously which requires the caller to wait until the entry has been made in the log.
The monitor may provide performance information. (Reference 3.2.2.3)

- 17 -

Reusable Realtime Operating System Software Requirements Specification

2.2.10) Error Recovery
2.2.10.1) Error Detection

The operating system must support hardware interrupts caused by error detection mechanisms.
The operating system must allow the user programs to access any status registers or other error

indicators.

The operating system services should always provide the standard error checking protocols on
communication channels and messages. The standards will differ according to device and
protocol. Storage of data should be optionally protected using checksums, parity, or other means.

The operating system must allow the user programs to define and implement communication and
storage protocols to protect their critical data. The operating system or user programs must be
allowed to scrub memory periodically where memory error correction is supported.

The operating system or user programs may implement time-outs or deadman routines to detect
the premature demise of a task executing in the system. These health checks must be supported
between tasks on different processors when implemented in a multiprocessor system. (Reference

3.5.3.2)
2.2.10.2) Restart

The operating system must be able to restart without being reloaded to memory. A initialization
process must initialize any state information required to be in a predetermined state at startup. In
addition a user defined initialization routine must be allowed to be inserted into the startup
process. This will allow any user defined state data to be placed into a consistent state before

use.

Being able to restart the system and the user programs without reinitializing the entire memory
space is the key to RROSS error recovery. Programs will need state information and other data
to reconstruct and resume activities interrupted by errors or hardware failures.

The operating system should support program restarts initiated by user programs. A user should
be able to restart the operating system itself, a user program (including itself), or a family of user
programs (a user program, its children, and siblings). (Reference 3.5.2.2)

During startup, only that data which is required by the configured services should be initialized.
Those services not chosen should not slow startup by initializing state data. Configurability of
initialization should allow the user to specify which services are critical to the system so that only
those critical services are initialized before the user programs are executed. After the user
programs have been given control, they would then allow initialization of secondary services in
the idle or spare time, or specify when initialization would occur.

When hardware errors are detected during the startup process and redundant assets are available,
replacements should be made and diagnostics should be run on the failing assets in idle or spare
time. The failed assets may be reported to user programs after the startup sequence is complete.
(Reference 3.5.2.3)

- 18 -

Reusable Realtime Operating System Software Requirements Specification

2.2.10.3) Checkpoint

When the system restarts, the user programs should be allowed to begin execution close to where
it was executing before the restart was initiated. To accomplish this, the user program must be
allowed to store its state data as it is executing and retrieve it when it restarts. The operating
system may support this function by:

e periodically saving all state data for all active tasks

e by providing a checkpoint function which saves all state data when directed by a user
program

e by providing safe storage routines which allow user programs to save their own state data
without fear of data inconsistency

e by allowing the user programs to save their own state data without fear of the operating
system reclaiming the space and initializing it.

(Reference 3.5.2.2)
2.2.10.4) Data Recovery

Data recovery must be allowed after an error has been detected. The operating system must not
prohibit storing data redundantly or using checksums or other encoding algorithms. Also, the
operating system must allow storage to be reserved so that it will not be reclaimed and initialized
when restarting the system. The operating system may optionally provide services to facilitate
these capabilities. (Reference 3.5.2.1)

2.2.10.5) Program Recovery

Programs must be allowed to start close to the point in the code executing when the error
occurred. The operating system may directly start the program at that point if it knows where it
is, or the program may be allowed to start from the beginning again. It would be up to the user
program to access state data stored before the error to determine from where to branch to
continue executing. (Reference 3.5.2.2)

2.2.10.6) Communication Recovery

Programs must be allowed to request and receive acknowledgment for transmissions and
interprocess messages. The state data associated with a program may contain the status of
expected versus received acknowledgments. Upon restarting, the unacknowledged messages
may be resent. Receiving programs would be expected to ignore receipt of multiple, identical
messages if they would be harmful. (Reference 3.2.2.2)

Reusable Realtime Operating System Software Requirements Specification

2.2.10.7) Hardware Recovery

Hardware failures are generally difficult problems to solve with software. Some errors can be
effectively handled however. Memory failures can be handled by reserving a portion of the
physical memory to be used later as replacement memory for a failed block. The operating
system and the hardware architecture must provide memory remapping to support this recovery
action. Communication device failures may be handled by allowing a spare or unused device to
be allocated to replace the failed device. The user programs may change devices being used or
the operating system may rename the unused device to appear as the failed device, thus allowing
the user program to remain ignorant of the actual device used.

Where the system hardware allows, the operating system must support, or allow user programs to
support, replacement of hardware assets. Processors, sensors, power supplies, memory, or other
assets may be brought on-line, reloaded, or restarted and processing must continue from a

predetermined point. (Reference 3.5.2.3)
2.3) User Characteristics

The users of this system are software developers who are most concerned about data integrity,
size of system and user software, and the predictability of scheduling user programs. Since these
systems often control the navigation, guidance, and maneuvering of a spacecraft, control data
must always be correct and timely. Since radiation hardened memory and processors are very
expensive, the size and complexity of the system software and compiled user software is a
concern. Spacecraft memories are typically small, 64KB to 64MB, and processors are often
slow, 1 MIPS to 50 MIPS. Because guidance and instrument deployment use strict timelines, it
is imperative that the scheduling of the user programs which control spacecraft functions be
entirely predictable and that dispatching within time frames can be guaranteed. Error detection
and recovery mechanisms are a key to guaranteeing predictable behavior. These features most
strongly influence spacecraft software and, therefore, this specification. (Reference 3.4.2)

2.4) Constraints

Additional constraints include migration in the space community away from assembly code
toward higher level languages such as C or Ada. Due to the expense of developing, launching,
and monitoring a spacecraft, mission success is all important. The operating system is always
considered mission critical meaning that some or all goals of the spacecraft will not be
obtainable if this component fails. The validation of all mission critical components is a strict
and detailed process. The operating system must be thoroughly tested and detailed test reports
should be available. Error injection mechanisms must be available for testing and validation of
the user's system. In addition, most user groups will request source code be provided so that
system problems can be addressed at all levels including hardware internals and software
instructions. (Reference 3.5.1 and 3.5.4)

2.5) Assumptions and Dependencies
2.5.1) Architectural Guidelines

These guidelines refer to the system architecture of which the operating system is only a part.
These are guidelines, not requirements and are intended to provide context and boundaries for the

operating system design.

- 20 -

Reusable Realtime Operating System Software Requirements Specification

2.5.1.1) Performance

Performance must be provided such that all tasks identified as critical can be completed within
required time periods. These tasks include the user programs themselves, operating system
overhead to execute them, and the execution of any program or interrupt handler which may
preempt them.

Operating system overhead includes system calls, context switching, memory management,
saving state data at a checkpoint, and coordinating threads or programs on multiple processors.

The size and complexity of the user programs will dictate the majority of the processor
performance required by software. That performance may be measured in any way, such as
MIPS or time to complete a standard program. A margin for growth should be specified to
accommodate changes in design and peaks in processing needs, i.e. Analysis shows x MIPS is
required, so 1.2 * x MIPS is specified to allow a 20% margin. A margin of 25 % should be
provided. (Reference 3.4.2)

The second major factor in determining processor performance requirements is power usage. A
spacecraft has severe power limitations; batteries are very heavy, nuclear fuel is expensive, and
solar radiation is not available in shadows and is weak when far from the sun. Power is usually
the most precious resource in spacecraft electronics systems. By using very slow clocks for a
processor, the power required by that processor can be minimized. A balance must be made
between the needs of software and the limits of the power subsystem. (Reference 3.2.2.1)

One or many processors can be used to provide this performance. Another reason to use multiple
processors is to support error recovery. When recovery from an error, including a permanent
critical fault, must be done more quickly than a spare processor or subsystem can be brought on-
line, then a hot spare must be available. A hot spare is running the same programs as the primary
unit and can monitor and take over for the primary unit immediately upon detecting an error in
the primary unit. Spares may also be warm, meaning they are powered and loaded, but not
executing user programs; or cold meaning not powered or loaded. Warm and cold spares provide
redundancy without using as much power while sacrificing recovery time. Cold spares are used
when error recovery need not be done quickly since loading usually takes a relatively long time.

The operating system must be able to accommodate any of the above types of spare processors.
This support may be provided by customized user services or programs. Communication
channels must be available with the same privileges already assigned to the original primary unit.
Shared data areas must be recoverable by going back to a previous state and reopening access
even if the primary unit had it locked when it failed. Busmaster-ship, when applicable, must be
transferable to a working unit. Memory areas and communications identifiers should be
remappable to allow replacement of a processor without affecting identifiers used by user
programs. (Reference 3.2.3.1)

In distributing user programs across multiple processors, the operating system may take the
following into account: processors specified by user programs, current CPU usage, operability of
a processor and its local resources and the availability of spares for it.

-21 -

Reusable Realtime Operating System Software Requirements Specification

2.5.1.2) Storage

Storage requirements are affected most severely by the following factors: available space, power
usage, software size, and buffering of image data during and after peak sensor use. The amount
of storage specified must be a balance of available system resources versus software needs.

A margin for growth should be specified to accommodate changes in design and peaks in storage
needs, i.e. Analysis shows x KB is required, so 1.2 * x KB is specified to allow a 20% margin. A

margin of at least 50% should be provided.

Type of storage must also be considered. RAM will be used for dynamic data and probably

programs, but NVRAM and ROM are also available. More robust storage such as NVRAM can

be used to store state data which is relatively stable and would aid initialization after power is

. applied to the system in the future. ROM can be used to store initialization programs and data to
be used when the system is powered on for the first time or subsequent times. Specialized

routines are often required to access non-standard storage media. The operating system must not

deny the user the freedom to create user defined device drivers to access any medium.

(Reference 3.4.2)

Error recovery requirements may increase the required system storage. In order to ensure the
state of data, multiple copies may be maintained by the operating system or user programs. The
multiple copies should be physically separated as much as possible, e.g. separate memory boards
with separate power supplies. Extra storage may be used as hot spares, meaning data is actively
updated on the duplicate copy by software. Extra storage may be used as cold spares. Cold spare
storage must be brought on-line and initialized before it is available for use. What type of spare
storage, if any, is required is a balance of power usage, available space, and error recovery needs.

2.6) Software Structure and Performance

A modular architecture is desirable to minimize the effort to implement the operating system on a
new hardware architecture. Hardware dependent pieces of code should be small and collected
together. (Reference 3.5.5)

The ability to customize the operating system by creating user defined extensions to add new
function or replace predefined system functions allows maximum flexibility. The system
implementation may create interfaces for optional functions which the users can implement as

they desire.

Extended capabilities may be provided by system software or the user. The system software
provided must not prohibit the user from providing customized extensions. Any constraints on
such customized functions or user extensions must be documented clearly to facilitate their
development. (Reference 3.5.6)

The partitioning of the operating system extensions between the kernel, application program
interfaces (API), or application programs (AP) is left to the developers. RROSS is specified to
allow users to customize, create, or remove system features by writing services and application
interfaces for those services. Since a service written by a user may be called as efficiently as
services provided by the kernel or system libraries, there is no expected performance difference
based on the origin or location of the services.

-2 -

Reusable Realtime Operating System Software Requirements Specification

While performance should not be dependent upon the partitioning of the software functions,
convenience will be. For usability, it is recommended that shared functions such as those related
to timers, communications, saving data, retrieving data, loading software, and monitoring
deadman timers be placed in shared libraries whether developed by the operating system vendor
or the user. Functions such as reconfiguration and custom initialization should be implemented
as part of the operating system initialization sequence. This is usually supported as a compile
and link customization service. All other programs should be considered autonomous user
programs which use services of other programs and provide services in return. While this is
practically no different from the other functions, conceptually, the remaining user functions are
only used by a few specific higher level functions and are not generally used by most programs in
the system.

User Functions

Shared User Functions Check for Errors
Interrupt Handlers Device Drivers Wiait for Errors
Deadman “Keeper” Comm Protection Wait for Log Messages
Set & Change Clocks Store Data Safely Initiate Restart
Get Safe Data Patch Memory from 1/0
Custom Init Kernel Telemetry
Check Comm Paths Scheduler Star Recognition
Load OS Memory Protection Thruster/Reaction Control
Check/Fix Restart Data Semaphores Send Data
Reconfiguration Detect Interrupts Compress Data
Inter-task Communications Sensor Control
Perform Sequence

Process Uplink

Program Load Files | Time Reference

Debug Shell Device Drivers Trajectory Determination
Debug Symbols Network UDP & TCP/IP Trajectory Control
Debug Monitor SLIP, Sockets, etc.

Shared System Functions

Figure 3. Software Partitioning

Reusable Realtime Operating System Software Requirements Specification

3.0) SPECIFIC REQUIREMENTS

Each requirement is of the form:
3.n.m) The operating system shall

where Necessity is expressed as:
shall = essential - required to meet specification
should = optional - desired but exceeds requirements

3.1) External Interfaces

3.1.1) Development Interface

1

RROSS development tools shall provide at least one compiler and a linker to create
loadable, executable image files from Ada or C source files.

RROSS development tools should support multiple host computers.

RROSS development tools should support multiple developers working in parallel on
the same multi-user host computer.

RROSS development tools shall produce program images which can be loaded into the
target processor's memory without manual manipulation of the image files.

RROSS tools should allow the use of any editor supported by the host system in place of
the tools' default editor.

RROSS tools should provide a simulator which can execute user programs on the host
computer as they would run on the target computer.

RROSS tools should provide a simulator which supports source level symbolic debug
and instruction level visibility.

RROSS simulation tools should provide the ability to add programmed responses to
stimuli such that hardware attached to the processor can be simulated, e.g. extended
memory access functions by an MMU or accessing registers in an 1/0 device.

RROSS tools should provide a profiler which can analyze the performance and data
flow of a user program.

10

The RROSS profiler should provide the timing for a user program such that the
execution time for each instruction or block of instructions is estimated and reported.

11

RROSS tools should provide the ability to control user source code such that
dependencies between files are known and recompiling one file automatically compiles

dependent files.

12

RROSS tools should provide the ability to control user source code such that different
versions of files referenced by version number can be compiled to create multiple
versions of executable code.

13

RROSS tools should provide the ability to control user source code such that only one
user may update a file at a given time.

- 24 -

" Reusable Realtime Operating System Software Requirements Specification

3.1.2) Debug Interface

14

RROSS tools shall provide an interface to load the operating system (RROSS) into the
target processor's memory.

15

RROSS shall provide an interface to load user programs into the target processor's
memory.

16

RROSS tools shall support an interactive interface to start and stop user programs.

17

RROSS tools shall support an interactive interface to query the status of all tasks, e.g.
running, blocked, defunct.

18

RROSS tools shall support an interactive interface to read and modify memory
referenced by address. '

19

RROSS tools shall support an interactive interface to read and modify variables used by
RROSS or user programs.

20

RROSS tools should support an interactive interface to read and modify interprocess
communications data structures.

21

RROSS tools should support an interactive interface to read and modify interprocessor
communications data structures.

22

RROSS tools shall provide maps which contain the addresses of memory blocks which
have been statically allocated for user programs, system services, variables, stacks, or
other uses.

23

RROSS shall provide, upon query, the addresses of memory blocks which have been
dynamically allocated for user programs, system services, variables, stacks, or other
uses.

24

RROSS debug tools should provide conditional breakpoints.

25

RROSS debug tools should provide the ability to perform preprogrammed responses to
reaching a breakpoint.

3.2) Functions
3.2.1) Standard OS Features
3.2.1.1) Scheduling

26

RROSS shall provide a preemptive priority scheduling algorithm.

27

RROSS shall provide at least 32 levels of priority for user tasks.

28

RROSS shall provide multitasking functions including creation, deletion, and
suspension of tasks.

29

RROSS shall provide priority inheritance for any resource, including semaphores, which
is shared between multiple tasks.

30

RROSS shall provide deterministic context switching between tasks in bounded time,
including Ada tasks.

.25 -

Reusable Realtime Operating System Software Requirements Specification

31 |RROSS shall provide documentation which specifies the rules governing context
| switching between tasks, including how to predict which task should be running after
the switch.

32 |RROSS shall guarantee that a task with the highest user priority and a periodic timer set
for 8ms intervals should be allowed to run at the 10ms intervals within 1ms.

33 |RROSS shall guarantee that a task with the highest user priority and which is attached to
an interrupt should be allowed to run within 1ms of the processor's report of the
interrupt.

34 |RROSS shall provide services to allow a user program to enter a critical section of code
which may not be interrupted or suspended until the critical section is exited.

35 |RROSS should provide services to dynamically set the priority of a user task in order to

suspend all other tasks when a high priority situation is found by a low priority program,
such as a background check finding an error.

3.2.1.2) Data Management

36 |RROSS shall provide software interfaces for dynamic allocation and deallocation of
system memory.

37 |RROSS shall provide memory management services to dynamically allocate and free
memory from a fixed block memory pool or an Ada heap.

38 | The size of the memory pool used for dynamic memory allocation and the size of the
blocks defined within it should be configurable by the user.

39 |RROSS should provide protection on a block by block basis against writing memory by
unauthorized user programs.

40 |RROSS should provide virtual memory services which reroute access of a specified
block of memory to another specified block of memory.

41 |RROSS should allow specified blocks of memory to be hidden from use such that they

can be used as replacement blocks when calling the memory rerouting services.

3.2.1.3) Interprocess Communication

42 |RROSS shall provide the capability for multiple tasks to share memory and coordinate
access to the shared memory.

43 |RROSS shall provide message queue facilities which support variable length messages
at the kernel's priority level.

44 |RROSS shall provide message queue facilities which support messages from interrupt
handlers to user programs.

45 |RROSS shall provide semaphores to be shared between tasks and services to access the
semaphores atomically.

46 |The RROSS message queue facility shall provide variable sized messages and data

packets.

- 26 -

Reusable Realtime Operating System Software Requirements Specification

47 |RROSS should provide to the sending program acknowledgment of receipt of
interprocess messages.

3.2.1.4) I/O Facilities

48 | The RROSS I/O primitives create, remove, open, close, read, write, and ioctl shall
provide user interfaces which are independent of the resource being accessed with the
exception of network sockets.

49 |RROSS shall provide UNIX I/O primitives referenced by a named object and using the
primitive create to return a file descriptor for a resource.

50 [RROSS shall provide UNIX I/O primitives referenced by a named object and using the
primitive remove to free the file descriptor for a resource.

51 [RROSS shall provide UNIX I/O primitives referenced by a named object and using the
primitive open to establish an input or output path with a resource.

52 [RROSS shall provide UNIX I/O primitives referenced by a named object and using the
primitive close to close an input or output path with a resource and place the resource
into a state ready to be opened again.

53 |RROSS shall provide UNIX I/O primitives referenced by a named object and using the
primitive read to read input from the resource to the user program.

54 |RROSS shall provide UNIX I/O primitives referenced by a named object using the
primitive write to write output to the resource from the user program.

55 |RROSS shall provide UNIX I/O primitives referenced by a named object and using the

primitive ioctl to perform specialized functions unique to the resource.

3.2.1.5) Device Drivers

56 |RROSS shall provide device drivers referenced by a named object.

57 |RROSS device drivers shall support the I/O primitives create, remove, open, close, read,
write, and ioctl.

58 [RROSS shall provide user interfaces for communications devices and allow device
drivers to be defined and implemented by the user.

59 |RROSS shall provide UNIX device drivers referenced by a named object and using the

primitive create to attach the driver to a device and return a file descriptor for the driver.

60 |RROSS shall provide UNIX device drivers referenced by a named object and using the
primitive remove to unattach the driver from a device and free the file descriptor for the
driver.

61 |RROSS shall provide UNIX device drivers referenced by a named object and using the
primitive open to establish communication with the device as an input or output device.

62 |RROSS shall provide UNIX device drivers referenced by a named object and using the

primitive close to close communication with the device and place the device and driver
into a state ready to be opened again.

=27 -

Reusable Realtime Operating System Software Requirements Specification

63 |RROSS shall provide the UNIX device driver primitive close such that the device and
driver are placed into a state ready to be opened again following a communications or
device error.

64 |RROSS shall provide UNIX device drivers referenced by a named object and using the
primitive read to read input from the device to the user program.

65 |RROSS shall provide UNIX device drivers referenced by a named object using the
primitive write to write output to the device from the user program.

66 |RROSS shall provide UNIX device drivers referenced by a named object and using the

primitive ioctl to perform specialized functions unique to the device.

3.2.1.6) Network Connectivity

67 |RROSS shall provide support for the Internet Protocol (IP).

68 |RROSS shall provide support for the User Datagram Protocol (UDP).

69 [RROSS shall provide support for the Transmission Control Protocol (TCP).

70 [RROSS shall provide sockets compatible with BSD 4.3 UNIX sockets.

71 |RROSS should provide File Transfer Protocol (FTP).

72 |RROSS should provide Remote Procedure Calls (RPC).

73 |RROSS should provide Telnet remote logon.

74 |RROSS should provide Network File System (NFS).

75 |RROSS should provide application loading across a network using IP.

76 |RROSS should provide a remote debugger which connects the host and the target
computer across a network using IP.

77 |RROSS should allow the user to provide an operating system loader based upon IP for

loading across a network.

3.2.1.7) File System

78 |The RROSS file system shall support the I/O primitives create, remove, open, close,
read, write, and ioctl.

79 |RROSS shall provide a file system which supports system memory as a file media where
a file refers to a named collection of data.

80 [RROSS should provide a file system which supports a disk device as a file media.

81 |RROSS shall allow the user to provide a file system which supports any readable and
writable storage media.

82 [RROSS shall allow the user to provide a file system which supports any readable storage

media, e.g. Read Only Memory (ROM).

3.2.1.8) Clocks and Timers

- 28 -

Reusable Realtime Operating System Software Requirements Specification

83

RROSS shall provide user interfaces for accessing at least the following clocks: a time-
of-day clock, a delay timer which causes an interrupt, and a periodic timer which causes
interrupts at regular intervals.

84

RROSS shall provide a time-of-day clock which shall keep a reference time from an
arbitrary date.

85

RROSS shall provide services to set and read the time-of-day clock.

86

RROSS shall provide services to set a delay timer which should signal the requesting
task after the specified delay.

87

RROSS shall provide services to set a periodic timer which should signal the requesting
task regularly at the specified interval.

88 |RROSS shall support a granularity of at least 1ms per tick on the time-of-day clock and
all timers used for delays and periodic signals.
3.2.1.9) Interrupts
89 |RROSS shall provide services to install and remove user defined interrupt handlers for

all interrupts provided by the hardware.

92

RROSS shall not preclude the development of interrupt handlers which handle nested
interrupts on the same or different levels.

91

RROSS shall provide services to mask interrupts on a level by level basis when such
masking is supported by the hardware architecture.

3.2.1.10) Loading and Unloading Software

92

RROSS shall allow the user to provide an operating system loader which may load
RROSS from any storage or communication media.

93

RROSS shall provide application loading from named files stored on any media which
is supported by the file system.

94

RROSS shall support application loading being initiated from the operating system or
another application (user program) which should become the parent of the loaded
program (child).

95

RROSS shall support user programs killing or removing themselves and other programs.

96

RROSS shall free all resources allocated to a program when that program is killed or
removed.

3.2.2) OS Extensions for Space Development
3.2.2.1) Dynamic Clock Rates

97

RROSS shall provide a method to dynamically control the interpretation of the clock
increment rate, i.e. user software may control the system clocks such that one clock tick
may represent 1ns at one system frequency and 8ns at another frequency and the time-
of-day clock and other timers must be adjusted to maintain correct orientation.

" Reusable Realtime Operating System Software Requirements Specification

3.2.2.2) Communication Safeguards

98 |RROSS device drivers shall report any detected errors to the user program calling the
driver.

99 |RROSS should provide a service to report errors to any task, including a task other than
the one which opened the device.

100 |RROSS shall provide UNIX device drivers such that by using the remove and create
primitives, the user can attach the driver of a failed device to another equivalent device.

101 |RROSS should provide interfaces such that multiple processes receive the same read
data from a device, i.e. two programs read same device and are given the same data in
the same order.

102 |RROSS should provide interfaces such that multiple processes may write to one device
and the data written is compared and must match to be transmitted; mismatched data is
reported to calling processes.

103 |RROSS should provide interfaces such that data written to a device is transmitted on
multiple hardware interfaces simultaneously.

104 |RROSS should provide interfaces such that data received from multiple hardware

interfaces is compared before being supplied to a user program performing a read from
the device; data errors are reported to reading processes.

3.2.2.3) System Visibility

105 | The RROSS kernel and service routines shall have the ability to write to a common log
such that the calling order of the services is preserved for later retrieval.

106 |The RROSS kernel and service routines should have the ability to write to a common
log asynchronously by sending message to separate logging task or synchronously by
using a subroutine or macro to access the log.

107 | The RROSS kernel and service routines should write to a common log the identity of
executing service, parameters passed in and out, and success or failure status.

108 |RROSS shall provide a software interface to user programs to log messages in a shared
area with the characteristics of a circular queue for later retrieval.

109 |RROSS shall provide a software interface to user programs to log messages in a shared
area of at least 1KB in size.

110 [RROSS shall provide the means for a user program to patch the program image or data
belonging to itself or other user programs.

111 |RROSS should provide a service to report which tasks have opened a specified device
driver.

112 |RROSS should provide a service to report which device drivers have been opened by a
specified task.

113 |RROSS device drivers should log any detected errors for later retrieval.

- 30 -

Reusable Realtime Operating System Software Requirements Specification

| 114 [RROSS shall provide an interface to user programs to load other user programs into the
target processor's memory.

115 [RROSS shall provide an interface to user programs to start and stop other user
programs.

116 |RROSS shall provide an interface to user programs to query the status of all tasks, e.g.
running, blocked, defunct.

117 |RROSS shall provide an interface to user programs to read and modify variables used by
RROSS or other user programs.

118 [RROSS should provide an interface to user programs to read and modify interprocess
communications data structures.

119 |RROSS shall provide an interface to user programs to read and modify memory
referenced by address.

120 |RROSS shall allow user programs to access any and all registers which the hardware
allows to be read or written.

3.2.3) OS Extensions for Distributed Processing

3.2.3.1) Interprocessor Communications

121 | When implemented for a multiprocessor system, RROSS shall provide shared memory,
semaphores, and message queue facilities such that the user is not required to know
which processor is executing any program.

122 | When implemented for a multiprocessor system, RROSS should allow the retrieval of
program state data saved by tasks on one processor by tasks on another processor.

123 | When implemented for a multiprocessor system, RROSS should provide distribution of
tasks across processors based upon requests of user programs, availability of processors,
and current CPU usage.

3.3) Performance

124 | When RROSS is loaded and the RROSS initialization code is invoked, RROSS shall
reach an operational state and be ready to start user programs within one second.

Some requirements in other sections may refer to performance. These other references are
located in specific sections due to their relation to the subject matter in those sections.

RROSS suppliers and developers are subject to all requirements in this specification regardless
of the section in which they appear.

3.4) Design Constraints
3.4.1) Standards Compliance
3.4.1.1) Programming Standards

125 |RROSS software interfaces for C shall conform with ANSI-Programming Language C,

- 31 -

Reusable Realtime Operating System Software Requirements Specification

X3.159-1989.

126

RROSS software interfaces for C should conform with POSIX standard IEEE-Std-
1003.1.

127

RROSS software interfaces for C should conform with POSIX standard IEEE-Std-
1003.4 for real-time extensions.

128

RROSS software interfaces for Ada should be provided by POSIX Ada bindings as
defined by IEEE-Std-1003.5.

129 |RROSS software interfaces for Ada shall conform with the Ada language reference
MIL-Std-1815A-1983.

130 |RROSS software interfaces for Ada should conform with updates to the Ada language
reference MIL-Std-1815, ANSI/ISO/IEC-8652:95 as they become the Ada standard.

3.4.1.2) Language Support

131 |RROSS tools shall provide compilers for at least the following languages: Ada, C,
Assembler.

132 |RROSS shall support user program development using Assembler and either C or Ada.

133 |RROSS should support user program development using Assembler, C, and Ada.

134 |RROSS tools shall allow code written in Assembler to be called from C or Ada
programs.

135 |RROSS tools shall allow code written in C to be called from Ada programs.

136

RROSS tools should allow code written in C to be called from Assembler programs.

137

RROSS tools should allow code written in Ada to be called from C and Assembler
programs.

138

RROSS shall provide documentation of the compilers' stack, register, and memory
usage.

139

RROSS shall provide standard library services including numeric, string, bit
manipulation, and trigonometric functions.

3.4.2) Constraints from System

140 |[There shall exist a minimum executable version of the RROSS kernel such that the
program image displaces no more than 64KB of memory and requires no more than
another 64KB of RAM memory. _

141 |There shall exist a version of the RROSS kernel such that the program image can be
placed in Read-Only-Memory (ROM) and executed.

142 |There shall exist a version of the RROSS kernel such that the program image can be
placed in Random-Access-Memory (RAM) and executed.

143 |RROSS shall not preclude the use of a CPU test interface such as the IEEE-1149.1 or

IEEE-488.

-32 -

Reusable Realtime Operating System Software Requirements Specification

144

RROSS should assume that the processor's maximum performance is three MIPS for
worst case timing analysis (actual processor performances may be greater).

, 3.5) Software System Attributes
3.5.1) Reliability

145

RROSS shall provide detailed and complete documentation of testing and analysis
performed to validate the operating system.

146

RROSS should provide detailed and complete documentation of testing and analysis
performed to validate the operating system by injecting errors into the system during or
prior to RROSS execution.

3.5.2) Availability
3.5.2.1) Data Protection

147

RROSS should provide user interfaces for storing data redundantly such that at least one
copy is consistent if processing is stopped.

148

RROSS should provide user interfaces for storing data redundantly such that at least two
copies are stored on physically distinct media, i.e. two different memory boards, a
memory and a disk, etc.

149

RROSS should provide services which compare data stored redundantly and makes all
copies equivalent to the latest consistent copy.

150

RROSS should provide services to report which task owns a specified allocated memory
block.

151

RROSS should provide services to report which memory blocks are allocated to a
specified task.

152

RROSS should provide a service to free all allocated memory blocks which are not
marked to be available after the operating system restarts.

3.5.2.2) Restarting System

153

RROSS shall allow the user to handle a CPU reset when it is implemented in hardware
as an interrupt.

154

RROSS shall provide the ability to restart the operating system and user programs
asynchronously to their previous execution or completion.

155

RROSS shall provide the ability to restart the operating system without réloading the
operating system image to memory.

156

RROSS shall not require the initialization of any memory except that containing critical
data for the kernel before starting execution.

157

RROSS should provide services to reinitialize operating system data which is required
to start the kernel from its initial state.

Reusable Realtime Operating System Software Requirements Specification

158

RROSS shall allow the user to create services to reinitialize operating system data which
is required to start the kernel from its initial state.

159

RROSS shall allow the user to create services to reinitialize user data which is required
to start the user programs from a saved state.

160

RROSS should provide services to allow user programs to invoke the restart of the
operating system.

161

RROSS should provide services to allow user programs to invoke the restart of other
user programs or themselves.

162

RROSS should provide services to allow user programs to invoke the restart of user
programs and any child or sibling tasks.

163

RROSS shall allow the user to create services to store data which should be available
though the operating system has been reinitialized and restarted between the storage and
retrieval of data.

164

RROSS should provide services to store data which should be available though the
operating system has been reinitialized and restarted between the storage and retrieval of
data.

165

RROSS shall allow the user to provide services to find and retrieve data which was
stored such that it would be available though the operating system has been reinitialized
and restarted between the storage and retrieval of data.

166

RROSS should provide services to find and retrieve data which was stored such that it
would be available though the operating system has been reinitialized and restarted
between the storage and retrieval of data.

167

RROSS should provide services to checkpoint the state of a user program such that the
program can be stopped and started from the saved state.

3.5.2.3) System Reconfiguration

168

The user should be able to specify the minimum needs of a system configuration which
is considered valid and should include communication paths, reserved communication
paths, number of processors, memory size, and reserve memory size.

169

If a valid system configuration exists (based upon specified needs), RROSS
initialization services should find at least one valid configuration and provide it to the

US€r programs.

170

If a valid system configuration exists (based upon specified needs), RROSS shall not
preclude user initialization services from finding at least one valid configuration and
providing it to the other user programs.

3.5.3) Security
3.5.3.1) Reporting Errors

171

RROSS services shall report detected errors to the caller of the service.

- 34 -

" Reusable Realtime Operating System Software Requirements Specification

172

RROSS shall report the abnormal termination, or death, of a program due to an error, to
the parent of the crashed program.

173

RROSS should provide services to query a program or resource for errors from another
program.

174

RROSS services shall report Ada exceptions to the caller of the service.

175

RROSS shall report the death of a program due to an Ada exception, to the parent of the
crashed program.

176

RROSS shall allow Ada exception handlers to use interprocess communications to
report errors to other tasks.

177

RROSS shall allow Ada exception handlers to use interprocess communications to
report errors to other tasks.

3.5.3.2) Detecting System Failures

178

RROSS shall allow the user to handle any and all hardware interrupts, including those

|reporting the detection of an error.

179

RROSS shall allow the user to maintain a deadman timer, i.e. a timer which requires
resetting and, when expired, causes a CPU reset.

180

RROSS shall allow the user to maintain background health-and-status tasks which can

access any memory by address and query the status of any executing task.

3.5.4) Maintainability

181 |RROSS source code shall be available to users, subject to use restrictions (for reference,
update, or both) as agreed between the RROSS supplier and user.
182 |The RROSS supplier shall be responsible for long term support of the operating system

version used by the spacecraft developer, subject to restrictions as agreed between the
RROSS supplier and user.

3.5.5) Portability

183

RROSS shall be portable such that it can be implemented for a new processor
architecture within one labor-year, including kernel, compilers, and all development
tools.

184

RROSS should be modular in structure such that processor specific code is confined to
10% or less of the source code files used to build the operating system.

185

RROSS tools shall provide portability to users such that user programs can be used on
any other architecture supported by RROSS by recompiling the user programs without
change to the source code.

186

RROSS tools shall provide portability to users such that operating system interfaces are
consistent between RROSS versions built for different architectures.

- 35 -

Reusable Realtime Operating System Software Requirements Specification

3.5.6) Configurability Guidelines
3.5.6.1) Using Optional Features

187 |RROSS tools shall allow the user to build an operating system (RROSS) image which
contains only those functions and data areas required by the user programs, i.e. RROSS
shall be scaleable.

188 | When removing a function from the RROSS image, the RROSS tools shall also remove

any data and initialization routines which support only the removed function.

3.5.6.2) Creating Customized Features

189 |RROSS tools should provide warning messages when system routines and functions are
being replaced or redefined by a user written function.

190 |RROSS tools shall allow the user to create functions which can be used as services
available to the operating system and user programs.

191 |RROSS tools shall allow the user to create functions which can be used to replace

services provided by the operating system.

3.5.6.3) Specifying Configuration

192

RROSS tools should allow the user to specify the address at which programs and data
are stored in the target computers memory.

- 36 -

DISTRIBUTION LIST

g AUL/LSE lcy
Bldg. 1405 - 600 Chennault Circle
Maxwell AFB, AL 36112-6424

DTIC/OCP 2 cys
8725 John J. Kingman Rd Ste 944
FT Belvoir, VA 22060-6218

AFSAA/SAI lcy
1580 Air Force Pentagon
Washington, DC 20330-1580

AJPO 1cy
Attn.: Joan McGarity

5600 Columbia Pike

Arlington, VA 22041

PL/SUL 2 cys
Kirtland AFB, NM 87117-5776

PL/HO 1cy
Kirtland AFB, NM 87117-5776

Official Record Copy
PL/VTQ/ Capt Mary Boom 2 cys
Dr. R.V. Wick

PL/VT ley
Kirtland AFB, NM 87117-5776

37/38

DEPARTMENT OF THE AIR FORCE
PHILLIPS LABORATORY (AFMC)

28 Jul 97

MEMORANDUM FOR DTIC/OCP
8725 John J. Kingman Rd, Suite 0944
Ft Belvoir, VA 22060-6218

FROM: Phillips Laboratory/CA
3550 Aberdeen Ave SE
Kirtland AFB, NM 87117-5776
SUBIJECT: Public Releasable Abstracts

1. The following technical report abstracts have been cleared by Public Affairs for
unlimited distribution:

PL-TR-96-1020 ADB208308 PL 97-0318 (clearance number)
PL-TR-95-1093 ADB206370 PL 97-0317
PL-TR-96-1182 ADB222940 PL 97-0394 and DTL-P-97-142
PL-TR-97-1014 ADB222178 PL 97-0300

2. Any questions should be referred to Jan Mosher at DSN 246-1328.

Q@J }753 e/

Jan Mosher
PL/CA

cc:
PL/TL/DTIC (M Putnam)

